Skip Connections Eliminate Singularities

ثبت نشده
چکیده

Skip connections made the training of very deep networks possible and have become an indispensable component in a variety of neural architectures. A completely satisfactory explanation for their success remains elusive. Here, we present a novel explanation for the benefits of skip connections in training very deep networks. The difficulty of training deep networks is partly due to the singularities caused by the non-identifiability of the model. Several such singularities have been identified in previous works: (i) overlap singularities caused by the permutation symmetry of nodes in a given layer, (ii) elimination singularities corresponding to the elimination, i.e. consistent deactivation, of nodes, (iii) singularities generated by the linear dependence of the nodes. These singularities cause degenerate manifolds in the loss landscape that slow down learning. We argue that skip connections eliminate these singularities by breaking the permutation symmetry of nodes, by reducing the possibility of node elimination and by making the nodes less linearly dependent. Moreover, for typical initializations, skip connections move the network away from the “ghosts” of these singularities and sculpt the landscape around them to alleviate the learning slow-down. These hypotheses are supported by evidence from simplified models, as well as from experiments with deep networks trained on real-world datasets.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Skip Connections Eliminate Singularities

Skip connections made the training of very deep networks possible and have become an indispensable component in a variety of neural architectures. A completely satisfactory explanation for their success remains elusive. Here, we present a novel explanation for the benefits of skip connections in training very deep networks. The difficulty of training deep networks is partly due to the singulari...

متن کامل

An Empirical Exploration of Skip Connections for Sequential Tagging

In this paper, we empirically explore the effects of various kinds of skip connections in stacked bidirectional LSTMs for sequential tagging. We investigate three kinds of skip connections connecting to LSTM cells: (a) skip connections to the gates, (b) skip connections to the internal states and (c) skip connections to the cell outputs. We present comprehensive experiments showing that skip co...

متن کامل

Variable Activation Networks: a Simple Method to Train Deep Feed-forward Networks without Skip-connections

Novel architectures such as ResNets have enabled the training of very deep feedforward networks via the introduction of skip-connections, leading to state-of-theart results in many applications. Part of the success of ResNets has been attributed to improvements in the conditioning of the optimization problem (e.g., avoiding vanishing and shattered gradients). In this work we propose a simple me...

متن کامل

The Importance of Skip Connections in Biomedical Image Segmentation

In this paper, we study the influence of both long and short skip connections on Fully Convolutional Networks (FCN) for biomedical image segmentation. In standard FCNs, only long skip connections are used to skip features from the contracting path to the expanding path in order to recover spatial information lost during downsampling. We extend FCNs by adding short skip connections, that are sim...

متن کامل

Delayed Skip Connections for Music Content Driven Motion Generation

In this study, we employ skip connections into a deep recurrent neural network for modeling basic dance steps using audio as input. Our model consists of two blocks, one encodes the audio input sequences, and another generates the motion. The encoder uses a configuration called convolutional, long short-term memory deep neural network (CLDNN) which handle the power features of audio. Furthermor...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2018